На главную Лекции и практикум по психологии Разное по психологии Математические методы обработки психологических данных - Сравнение средних значений
Математические методы обработки психологических данных - Сравнение средних значений
Лекции и практикум по психологии - Разное по психологии
Индекс материала
Математические методы обработки психологических данных
Шкалы измерений
Табулирование данных
Квантиль
Меры центральной тенденции
Меры изменчивости
Нормальное распределение
Предварительный анализ выборки
Сравнение средних значений
Сравнение дисперсий
Значимость коэффициента корреляции
Коэффициент ранговой корреляции Кендалла
Бисериальный коэффициент корреляции (БКК)
Однофакторный анализ (ОФА)
Двухфакторный анализ
Проверка нормальности распределения исходных данных
Все страницы

16. СРАВНЕНИЕ СРЕДНИХ ЗНАЧЕНИЙ КОЛИЧЕСТВЕННЫХ ПРИЗНАКОВ ДВУХ ЗАВИСИМЫХ (СВЯЗАННЫХ) ВЫБОРОК

Иногда нам приходится измерять один и тот же признак (показатель) для одной и той же группы лиц, но в различные моменты времени. Например, до проведения эксперимента и после эксперимента. В результате в качестве исходных данных мы получаем две выборки одинакового объема х1, х2, …, хn и у1, у2, …, уn (одни и те же люди). Причем элементы выборки, стоящие на одном и том же месте в каждой из выборок должны соответствовать измененному показателю для одного и того же лица. Поэтому такие выборки часто называются связанными. Они являются зависимыми, т.к. значения элементов второй выборки зависят от значений элементов первой выборки. Исходные данные в рассматриваемом примере называются типа «до – после». Связанными выборками могут рассматриваться также данные типа «брат – сестра» (в 1 выборке показываем мальчиков, во второй – девочек), «муж – жена». Для таких данных можно рассмотреть задачу сравнения средних значений двух выборок, для решения которой применяется общая схема проверки статистической гипотезы.
1 и 2 этапы – см. 15.
3 этап – вычисляем наблюдаемое значение статистики критерия. Для этого сначала из двух исходных выборок получаем одну выборку разностей, которую будем обозначать d1, d2, …, dn, где di = xi – yi. По полученной
n
выборке разностей вычисляем среднее значение d = di : n, а также
n 2 i=1
стандартное отклонение Sd = (di – d) : (n – 1), тогда наблюдаемое
i=1
значение статистики критерия вычисляется по следующей формуле:
tнабл. = n d/Sd
4 этап – находим критическое значение статистики критерия. В нашем случае статистика критерия имеет t-распределение Стьюдента с числом степеней свободы = n – 1, поэтому для нахождения t-критического необходимо воспользоваться статистической таблицей распределения Стьюдента (см 4 этап 15 параграфа).
5 этап – делаем вывод о правильности той или иной гипотезы по следующему правилу:
1) если –tкр < tнабл. < tкр, то принимается нулевая гипотеза, т.е. делаем вывод о том, что средние значения ГС статистически одинаковы или, другими словами, проведенный эксперимент не оказал влияния на средние значения изучаемого показателя.
2) если tнабл. < - tкр или tнабл. > tкр, то принимается альтернативная гипотеза, т.е. мы делаем вывод о том, что средние значения рассматриваемых ГС статистически различны или, другими словами, эксперимент привел к изменению среднего значения изучаемого показателя. Для того, чтобы выяснить, в какую сторону произошло изменение среднего значения (стало больше или меньше), необходимо сравнить среднее значение двух исходных выборок х и у (арифметически).

формула20

Примечание. 1) рассмотренный критерий должен применяться для выборок, извлеченных из ГС, имеющих нормальное распределение с одинаковыми дисперсиями. 2) если эти условия не выполняются, то необходимо воспользоваться критерием, рассмотренным далее в параграфе 18. 3) рассмотренный в данном параграфе критерий в литературе обычно называется парным t-критерием.

Пример: Был проведен эксперимент по исследованию влияния процесса обучения на уровень знаний студентов колледжа. 100 первокурсникам был предложен тест из 60 вопросов, этот же тест был предложен этим же студентам, но уже выпускникам (когда они уже отучились). В качестве измеряемого показателя рассматривалось количество правильных ответов. Проверить гипотезу о наличии либо отсутствии влияния процесса обучения в колледже на уровень знаний. Решение. В нашем эксперименте исходные данные представляют собой 100 пар значений типа «до – после», т.е. две связанные выборки х1, х2, …, х100 и у1, у2, …, у100. Выбираем уровень значимости = 0,01. По исходным выборкам была вычислена выборка разности, по которой было найдено d = - 7,02 Sd = 8,02 (стандартное отклонение) n = 100 tнабл. = 100 (- 7,02:8,02) = - 8,75. Будем искать по таблице tкр. /2 = 0,01:2 = 0,005 = n – 1 = 100 – 1 = 99.

формула21

Т.е. мы делаем вывод, что процесс обучения в колледже приводит к изменению среднего уровня знаний. d = - 7,02 < 0 d = х – у < 0 = х < у. Таким образом, средний уровень знаний за время обучения в колледже повысился.

17. СРАВНЕНИЕ СРЕДНИХ ЗНАЧЕНИЙ РАНЖИРОВАННЫХ ПРИЗНАКОВ ДВУХ НЕЗАВИСИМЫХ ВЫБОРОК

Как уже говорилось ранее, если исходные выборки извлечены не из нормальных ГС, то критерий Стьюдента не применим, им нельзя пользоваться. В этом случае используется не параметрический критерий Манна-Уитни. (параметр. – ср. знач. дисперсии; не параметр. – параметры выборки не интересуют). Этот же критерий можно использовать, когда наши исходные данные проранжированы, т.е. измерены в порядковой (ранговой) шкале. Данный критерий позволяет проверить гипотезы о равенстве средних значений двух ГС, когда в качестве исходных данных рассматриваются две независимые выборки. Для решения такой задачи воспользуемся общей схемой проверки статистической гипотезы.
1 этап. Выдвигаются две статистические гипотезы: основная нулевая Н0 о том, что средние значения двух рассмотренных ГС статистически одинаковы и альтернативная Н1 о том, что эти средние значения статистически различны:
Н0: х= у
Н1: х/= у
2 этап. Выбираем уровень значимости .
3 этап. Вычисляем необходимое значение статистики критерия. Для этого сначала две исходные независимые выборки (необязательно одинакового объема) х1, х2, …, хn и у1, у2, …, уm объединяем в одну выборку. Полученную объединенную выборку ранжируем, т.е. присваиваем каждому элементу объединенной выборки ранг, который соответствует порядковому номеру этого элемента в упорядоченной объединенной выборке. После этого вычисляем сумму рангов элементов первой выборки, которую обозначим R1 и сумму рангов элементов второй выборки R2. Затем вычисляем промежуточные величины u1=nm+1/2n(n+1) – R1

формула22

Примечания: 1) не имеет значения как ранжируются элементы выборки: по возрастающей или по убывающей. 2) если два или более элемента выборки имеют одинаковое значение, то они называются совпадающие. В этом случае каждому из этих элементов присваивают ранг, равный среднему значению из тех рангов, которые были бы присвоены этим совпадающим значениям в случае их несовпадения.
Пример: у 26 юношей в возрасте от 18 до 24 лет был измерен уровень невербального интеллекта с помощью методики Векслера. 14 юношей были студентами физического факультета, а 12 – психологического факультета. Можно ли утверждать, что одна из групп превосходит другую по уровню невербального интеллекта? Решение:


Физики (хi)

Ранги физ.

Психологи (уi)

Ранги пс.

111
104
107
90
115
107
106
107
95
116
127
115
102
99

15,5
6,5
11,5
1
20,5
11,5
9
11,5
2
22
26
20,5
4,5
3

113
107
123
122
117
112
105
108
111
114
102
104

18
11,5
25
24
23
17
8
14
15,5
19
4,5
6,5

 

R1=165

 

R2=186

1 этап. Решаем задачу двух независимых выборок методом Манна-Уитни, т.к. имеются две группы студентов физ. И псих. Факультетов. х1, х2, …, х14 и у1, у2, …, у12. Необходимо сравнить группы по уровню невербального интеллекта, что означает сравнить средние значения. Чтобы не проводить проверку данных на нормальность, мы воспользуемся рассмотренным критерием Манна-Уитни.

n =14 m=12

102 : (4+5) : 2 = 4,5 104 : (6+7) : 2 = 6,5 107 : (10+11+12+13) : 4 = 11,5 111 : (15+16) :2 = 15,5. Для проверки правильности ранжирования мы должны вычислить величину R = ((n+m)(n+m+1)) : 2. Если мы правильно проранжировали, то эта величина R должна равняться сумме R1+R2.
R = R1 + R2 . В нашем случае R1 – сумма рангов элементов первой выборки = 165; R2 – второй выборки = 186 R1+R2=351 R = ((14+12)(14+12+1)) : 2 =351
3 этап. Вычисляем u1=14 12+1/2 14 (14+1) – 165 = 108 u2= 14 12+1/2 12 (12+1) – 186 = 80 Отсюда имеем, что u=108. Zнабл. = (108 – ½ 14 12) : (14 12 (14+12+1)) : 12 = 1,23.
4 этап. = 0,05 1 - /2 = 1 – 0,05/2 = 0,975. Из таблицы находим, что Zкр = 1,96 (был использован метод Манна-Уитни и был получен результат Zнабл. = 1,23 Zкр = 1,96)

формула23

Так как Zнабл. < Zкр, то мы принимаем нулевую гипотезу Н0, т.е. делаем вывод о том, что по среднему уровню невербального интеллекта студенты-физики не отличаются от студентов-психологов на уровне значимости 0,05.

18. СРАВНЕНИЕ СРЕДНИХ ЗНАЧЕНИЙ РАНЖИРОВАННЫХ ПРИЗНАКОВ ДВУХ СВЯЗАННЫХ ВЫБОРОК

Если исходные данные в виде двух связанных выборок извлечены не из нормальных ГС, то парные критерии из параграфа 16 не применимы. В этом случае используется критерий Уилкоксона. Этот же критерий может использоваться, когда исходные данные измерены в порядковой шкале. Исходные выборки в нашем случае должны быть связаны (зависимы), например: данными типа «до – после». Для решения задачи сравнения средних значений воспользуемся общей схемой проверки статистической гипотезы.
!. Выдвигаются две статистические гипотезы: основная нулевая о том, что средние значения двух рассматриваемых ГС статистически одинаковы на уровне значимости и альтернативная гипотеза о том, что эти средние значения статистически различны Н0 : х = у Н1 : у /= х.
2. Выбираем уровень значимости .
3. Вычисляем наблюдаемое значение статистики критерия. До этого по двум исходным выборкам одинакового объема х1, х2, …, хn и у1, у2, …, уn получаем одну выборку разностей d1,d2,…,dn, где di=xi=yi. В полученной выборке разностей ранжируем абсолютные величины в возрастающем порядке. После этого каждому рангу приписываем знак его разности. Вычисляем сумму положительных рангов, которую обозначают , тогда наблюдаемое значение статистики критерия вычисляются по следующей формуле: Zнабл. = (N – (n(n+1) : 4) : (n(n+1)(2n+1) : 24).
4. Находим критическое значение статистического критерия. В нашем случае статистика критерия имеет стандартное нормальное распределение, поэтому для нахождения критического значения Zкр необходимо воспользоваться статистической таблицей стандартного нормального распределения (см.4 этап параграфа 17).
5. Делаем вывод о правильности той или иной гипотезы по следующему правилу: 1) если – Zкр < Zнабл. < Zкр, то принимается Н0, т.е. делается вывод о том, что среднее значение двух рассматриваемых ГС статистически одинаковы на уровне значения , или, другими словами, в результате эксперимента не произошло изменений среднего значения исследуемого признака. 2) если Zнабл. < - Zкр или Zнабл. > Zкр, то принимается гипотеза Н1, т.е. делаем вывод о том, что эти средние значения статистики различны на уровне значимости или, другими словами, в результате эксперимента произошли изменения среднего значения исследуемого признака.
Примечания: 1) нулевые разности игнорируются. В этом случае необходимо уменьшить соответствующим образом величину n. 2) если в выборке разностей встречаются абсолютные величины, то в этом случае в качестве ранга совпадающим значениям присваивается ранг, равный среднему значению тех рангов, которые получили бы эти величины в случае их несовпадения.
Пример: два сорта пшеницы сравнивают по урожайности. Сорт «а» - обычной разновидности, сорт «б» - новый гибрид. Для этого выбирают 10 участков, каждый из которых делят пополам. На каждом отдельном участке условия роста и созревания одинаковы, случайным образом выбирают одну половину участка и засевают ее сортом «а», а вторую – «б». Результаты сбора урожая приведены в соответствующей таблице. Есть ли подтверждение того, что урожайность сорта «б» выше урожайности сорта «а»?

Сорт «а»

yi

Сорт «б»
xi

Разности «б»-«а»
di=xi-yi

ранги

36,9
35,2
31,2
34,1
36,1
34,1
37,2
36,8
29,6
35,4

36,8
37,1
31,2
34,1
35,9
35,2
37,9
37,2
30,2
36,5

  • 0,1

1,9
0,2
0

  • 0,2

1,1
0,7
0,4
0,6
1,1

  • 1

9
2,5

  • 2,5

7,5
6
4
5

n=9 N=9+2,5+7,5+6+4+5+7,5=41,5
Zнабл.= (41,5 – (9(9+1) : 4)) : (9(9+1)(2 9+1) : 24) = 2,26
=0,05 1 - /2 Zкр = 1,96

формула24

Принимается гипотеза Н1, т.е. средние урожайности сортов «а» и «б» статистически различны на уровне значимости 0,05. Для окончательного ответа на поставленный задачей вопрос необходимо вычислить среднее значение по данным для сорта «б», а также среднее значение по данным для сорта «а». После чего сравнить арифметически эти вычисленные средние значения. В нашем случае, т.к. положительных разностей гораздо больше и они сравнимы по величине с отрицательными, то действительно средняя урожайность сорта «б» выше средней урожайности сорта «а».



 

Поиск

Яндекс.Метрика
Все права защищены. При при копировании материалов сайта, обратная ссылка, обязательна! Варианты ссылок:
HTML код:

Код для форумов:


Уважаемые пользователи и посетители сайта!
Спасибо за то, что вы присылаете материал на сайт «Ваш психолог. Работа психолога в школе» по адресу sait.vashpsixolog собачка mail.ru Убедительная просьба, обязательно указывайте автора или источник материала. На многих материалах авторство потеряно, и, если вы, являетесь автором одного из них, пришлите письмо с точной ссылкой на материал. Если на ваше письмо, вы не получили ответ, напишите еще раз, т.к. письма иногда попадают в спам и не доходят.
Смотрите внимательно: авторство или источник указываются, чаще всего, в конце материала (если материал разбит на страницы, то на последней).
С уважением, администрация.